
PHYSICAL REVIEW E 69, 036612 ~2004!
Generation and classification of localized waves by Lorentz transformations in Fourier space

Peeter Saari and Kaido Reivelt
Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia

~Received 15 August 2003; published 31 March 2004!

The Lorentz transformations of propagation-invariant localized waves~also known as nondispersive or
nondiffracting or undistorted progressive waves! are studied in the frequency-momentum space. For supports
of wave functions in this space rules of transformation are derived which allow one to group all localized
waves into distinct classes: subluminal, luminal, and superluminal localized waves. It is shown that for each
class there is an inertial frame in which any given localized wave takes a particularly simple form. In other
words, any localized wave is nothing but a relativistically aberrated and Doppler shifted version of a simple
‘‘seed’’ wave. Also discussed are the relations of the physical~subluminal! Lorentz tranformation to other
mathematical tranformations used in the literature on localized waves, as well as physical interpretation of the
substantial changes that localized waves undergo if observed and generated in different inertial frames.

DOI: 10.1103/PhysRevE.69.036612 PACS number~s!: 11.30.Cp, 42.25.Bs, 03.30.1p, 42.65.Re
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I. INTRODUCTION

The exploration of ultrawideband subcycle or few-cyc
pulsed fields has been expanding during the recent y
hand in hand with advancements in the generation of
trashort optical, terahertz, and ultrasonic pulses. The theo
ical study of a specific subclass of such fields—beams
bulletlike wave packets called localized waves—was tr
gered by the discovery of several intriguing solutions to
linear source-free wave equation~see pioneering paper
@1–11# and reviews@12–17#!. The distinguishing feature o
all types of the localized waves~LWs!-termed the Focus
Wave Mode,X wave, Bessel-X and Bessel-Gauss pulse
etc.—is that their instantaneous intensity~or energy! distri-
bution propagates without any spread or distortion in f
space or linear media up to infinity in a theoretical limit.
reality, for finite-energy, i.e., finite-aperture waves, the de
of such an invariant propagation of the pulse—which, e
consists of an intense central peak with a diameter of
order of its mean wavelength on a sparse low-inten
background—is of course finite, yet it considerably exce
the length of the waist of common focused wavefields. D
ing the first 15 years of activity in theoretical research
ultrasonicX wave was the only LW whose feasibility ha
been verified@10#. Despite understandable obstacles enco
tered in the optical domain due to the large bandwidth a
nonseparability inherent to LWs, to date opticalX-type
waves or Bessel-X pulses@18–22# and focus wave mode
~FWMs! have been experimentally generated@23#. Very re-
cently the formation ofX waves in a nonlinear crystal wa
observed by an international research team@24#. A theory
was developed for the propagation and diffraction of LWs
various optical elements and structures~see, e.g., Refs
@25,26# and references therein!, in frequency doubling media
@27#, and optical parametric generators@28#.

In a more general context LWs are related, on the o
hand, to monochromatic~pseudo!nondiffracting beams,
widely studied and applied since the intriguing paper on
zeroth-order optical Bessel beam@29#. In a sense an interme
diate class is constituted by waveguide LWs composed
discrete spectrum of harmonics of a waveguide mode@30#.
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On the other hand, continuous-spectrum superposition
LWs @12,14# represent general finite-energy pulsed bea
@31,32# that exactly obey the wave equation and consist
ultra-wide-band pulses converging to and expanding fr
the focus@33,34#. Finally, another generalization of the con
cept of propagation-invariant LWs leads to periodically se
reconstructing fields~see Refs.@15,35–37# and references
therein!.

Names of the LWs known so far—despite revealing so
characteristics of a given LW—are of little help in system
atizing the variety of them, all the more since the names
typically related to those LWs whose wave function has
particular closed-form mathematical expression, whereas
latter circumstance is rather occasional. A physical class
cation of LWs according to geometrical properties of t
dependence between the frequency and longitudinal mom
tum of their monochromatic constituents was first introduc
in Ref. @11#. This approach—actually based on consideri
the group velocity of the LW irrespective of its particula
spectrum or wave function—has been developed furthe
our papers@38–42#, where LWs are divided into classes d
pending on how the support of the spectrum looks in m
mentum space. Such a geometrical approach also revea
lationships between LWs hidden under different names.
the other hand, it turns out that the Lorentz transformat
~LT! in coordinate-space relates the FWM to the well-kno
monochromatic Gaussian beam@6#. The coordinate-space LT
has been used for developing the so-called boost repres
tion of LWs @14#, which not only relates some LWs to sim
pler waves considered in textbooks, but which also ha
helped to find new closed-form LWs.

In the present work we deal with Lorentz transformatio
in frequency-momentum space. The motivation is to deve
a classification of LWs based on how the support of
spectrum behaves under the Lorentz transformation. Our
is also to show how certain simple waves can be conside
as parent or seed waves to families of LWs in the sense
any LW is nothing but an aberrated and Doppler shifted v
sion of corresponding simple wave or, in other words,
latter observed in another inertial frame.

For introducing the main idea of the present study, let
©2004 The American Physical Society12-1
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consider a pair of straight lines which move—remaining p
allel to thez8 axis in an inertial reference frameK8—with a
speedc in the (x8,z8) plane. The lines may represent, e.
projections of phase or pulse fronts of plane waves that
perpendicular to the plane (y850) @see Fig. 1~a!#. If at the
momentt850 the lines coincide with the axisz8, they are
described by the equationx856uct8u while the coordinate
z8 is a freely running parameter for the lines. In a laborato
frame K, whose axes are parallel to those ofK8, and with
respect to whichK8 is moving along the positive direction o
the z axis with a subluminal speedv, the coordinates are
given by the Lorentz transformations

x5x8,

z5g~z81bct8!, ~1!

ct5g~ct81bz8!.

Here b[v/c,1 is the speed ofK8 in units of c and g
[(12b2)21/2. Through the use of Eq.~1! in the laboratory
frame the equation of the moving lines turns out to be

x56ug̃~z2b21ct!u, g̃[1/Ab2221. ~2!

If one defines a superluminal speedṽ[b21c5c2/v.c,
then g̃5( ṽ2/c221)21/2 turns out to be the superlumina
counterpart of the relativistic factorg. Equation~2! tells us
that for a laboratory observer the lines behave in a co
pletely different manner—instead of being parallel they
crossed under the angleu5arccotg̃ and the crossing point a
well as the wholeX-like figure moves along thez axis with
the superluminal speedṽ, as shown in Fig. 1~b!. ~Parentheti-
cally we remark that what oneobservesbeing in a reference
frame is not what oneseesor records by a camera, since th

FIG. 1. Flight of two straights~depicted as thick grey lines!
observed in different frames:~a! in the primed frame that moves t
the right relative to the unprimed laboratory frame, and~b! in the
unprimed frame that moves, conversely, to the left relative to
primed one.
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direct picture has been more or less distorted due to the fi
time the scattered light needs to travel to the observ!
Hence, we have a hint that theX-type waves as well as othe
more complicated localized waves may be nothing
simple textbook-example-type waves observed from mov
frames.

To introduce the Fourier representation of LWs, let
consider a simple case of an axially symmetrical LW if n
only its energy distribution~modulus squared of its wav
function! but also the wave function itself is propagatio
invariant. In cylindrical coordinates and in the form of an
lytic signal it is given by a wideband superposition@S(k)
being the spectrum# of Bessel beams:

CX~r,z,t !5E
0

`

dk S~k!J0~krr!exp~ ikzz2 ivt !. ~3!

Herek5v/c52p/l is the wave number, andr is the trans-
versal distance from the propagation axisz. The zeroth-order
Bessel function of the first kindJ0(krr) can be viewed as a
cylindrical counterpart of the lateral interference profile fa
tor cos(k'x) of the field of a pair of plane waves propagatin
with their k vectors in the (z,x) plane at angles6u relative
to thez axis. The componentk' of thek vector is transverse
to thez axis, uk'u[kr[k sinu, andkz[k cosu is the wave
number along the propagation axis. If such a LW does
contain low-frequency components down to the dc one,
if S(k→0)50, but the bandwidthDk is still of the order of
the mean wave numberk̄, the field shows both the Besse
beam-type rings and the characteristicX-like shape in its
spatial distribution~Fig. 2!. Therefore such a LW has bee
called the Bessel-X wave @18#. Since kzz2vt5kz(z
2ct/cosu), temporal dependence enters into Eq.~3! through
the propagation variablezt5z2 ṽt only, and therefore the
whole pulse propagates rigidly along thez axis with super-
luminal speedṽ[c/cosu.

The paper has been organized as follows. In Sec. II
briefly introduce known general geometrical features of
Fourier representations of the localized waves, and de
some general rules that govern the impact of aberration
Doppler shift on the supports of the ultrawideband spectra
the LWs. In Sec. III we discuss superluminal generalizatio

e

FIG. 2. Bessel-X wave field comprised of plane wave pulse
containing about three cycles. As grey-scale plots in a plane of
propagation axis~thez axis! and at a fixed instant, shown are~a! the
real part of the wave function and~b! its amplitude~modulus!. The
arrow indicates propagation direction of the wave.
2-2
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GENERATION AND CLASSIFICATION OF LOCALIZED . . . PHYSICAL REVIEW E69, 036612 ~2004!
of the common Lorentz transformation and its modificatio
Section IV contains our main results; there we systema
LWs into families according to geometrical and Loren
transformational properties of their supports in frequen
momentum space, and present an example for each fa
showing how an elementary simple wave field with a p
ticular spectrum gives birth—through a change of the sp
of the reference frame—to a more complicated LW with
corresponding spectral profile. The last section contains c
ments and conclusions on the results obtained in Sec. IV

II. LORENTZ TRANSFORMATIONS AND
SPECTRAL SUPPORTS

A. Peculiarities of spectral supports of localized waves

Despite a general solutionC(r ,t) of the free-space scala
wave equation depends on four coordinatesx, y, z, andct,
its transform domain (k-space or spectral! representation
C̃(k,v/c) has only three independent arguments due to
dispersion-relation restrictionkx

21ky
21kz

22(v/c)250 im-
posed by the wave equation. In other words, the four-ve
(k,k[v/c) of a light wave is always an isotropic one. Thu
the spectral functionC̃(k,k) is not equal to zero only on th
surface of a cone given by equationk25kx

21ky
21kz

2 in the
four-dimensional Fourier space. In other words, the supp
of the functionC̃(k,k) has to lie on that conical surface. I
the case of azimuthal symmetry one can introduce the cy
drical coordinates by replacingkx

21ky
2→kr

2 thus reducing the
dimensionality of the support to 2 and gaining a possibi
to depict the support as a conical surface in Fourier sp
with three axes:kz ,kr ,k ~or v/c); see Fig. 3. The genera

FIG. 3. The conical surface in the Fourier space, which
support of any wave has to lie on. The axisk' depicts one of the
transverse componentskx ,ky or—for cylindrically symmetric
waves—any transverse component of the wave vectork. Depicted
on the surface is the support line of a localized wave, which ha
subluminal velocity because—as seen in the figure—the projec
of the line onto the (kz ,k) plane is a straight with a slope less tha
1. Since for solutions to the wave equation as analytic signals
lower cone with negative frequencies is absent and forkr represent-
ing the transverse components in the cylindrical system there ar
negative values, henceforth we deal with the rear-left half of
upper cone only.
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axisymmetric field as an analytic signal is then expressible
an expansion over the zeroth-order Bessel beams propa
ing both forward and backward along thez axis:

C~r,z,t !5E
2`

`

dkzE
ukzu

`

dk C̃~kz ,k!J0~Ak22kz
2r!

3exp~ ikzz2 ikct!. ~4!

Here the two-dimensional integration covers the area of p
jection of the support on the cone onto the plane (kz ,k) in
contrast to the one-dimensional integration in Eq.~3! above.
For uC(r,z,t)u2 to be propagation invariant, i.e., to depen
on z and t through the propagation variablez2vgct , where
vg is a constant group velocity alongz axis in units ofc, the
variablesk andkz must be bound linearly@38–43#,

k5vgkz1b, ~5!

whereb is a constant. Hence, the spectrum has to be sing
and may be factorized in the following form:

C̃~kz ,k!5S~k!d~k2vgkz2b!Q~k22kz
2!, ~6!

whereS(k) is any complex-valued function of one real pos
tive variable and the Heaviside unit stepQ(x) has been in-
troduced as a factor in order to allow thek integration in Eq.
~4! to start fromk50 instead ofk5ukzu. Thus, for an axi-
symmetric wave packet to be a propagation-invariant LW,
spectral support must be a line of intersection of the co
surface by a plane perpendicular to the plane (kz ,k); see Fig.
3. The projection of the line onto the plane (kz ,k) is a
straight with the slopevg ~Fig. 3!. Let us notice that, ifb
50 and if the pulse is superluminal withuvgu.1, the sup-
port may stretch up to the origink5kz5kr50 „since in this
caseQ(k22kz

2)5Q@kz
2(vg

221)#51… and the expression fo
the field reduces to Eq.~3!.

B. Lorentz transformation of wave vector

In order to study how a~scalar! wave field given in one
system of coordinates changes if observed from another
ertial reference frame, one may employ the Lorentz trans
mation of the space and time variables of the wave functi
This the approach the authors of Ref.@14# is applied to de-
rive various localized wave solutions to the wave equati
Alternatively, one may Lorentz transform the wave vecto
of the single-frequency constituents of the field instead, a
leave the coordinates alone as free variables. In this case
transformation of the field, including the change of its sp
tiotemporal shape, is considered as a manifestation of
distinct physical effects—the Doppler shift and the aber
tion. This is the approach we employ throughout the pres
study. The Lorentz transformations of the components of
wave vector read

kr⇒kr ,

kz⇒g~kz1bk!, ~7!

k⇒g~k1bkz!.
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Unlike Eq. ~1! the primes have been omitted here and
pression~7! is interpreted as follows: given a wave field
the moving frameK8, we replace the wave vectors of i
cylindrical-wave constituents in order to get the wave fun
tion describing the field, as observable in the laborat
frame. The transformation is geometrically depicted in F
4. We see that as the relative speed between the fra
changes, the end point of the wave vector projection draw
hyperbola in the (kz ,k) plane, while the change of the ord
natek of the point displays a Doppler shift and a change
the abscissakz ~the aberration!. Let us note parenthetically
that the vanishing derivative of the curve near the verti
axis depicts the well-known quadratic smallness (;b2/2) of
the transverse Doppler effect.

Equation~7! and Fig. 4 also indicate how thek-domain
support of a general axisymmetric field—see Eq.~4!—is
transformed if the field is observed in another referen
frame: every point of the support has to move along surf
of the cone~Fig. 3! to a new location in accordance with E
~7!. The most singular support is a single point—the tip

FIG. 4. Geometrical representation of the Doppler shift and
erration of a monochromatic plane wave as the Lorentz transfor
tion of its wave vector. Depicted are the wave vector projectio
~grey double-line arrows! ~a! onto the (kz ,k) plane and~b! onto the
(kz ,kr) plane. The unit of the scales is conventional but if it
taken to be 107 rad/m510 rad/mm, values ofk from 1 to 2 units
fall into optical domain from red to near ultraviolet. The forbidde
region outside the conical surface~cf. Fig. 3! is depicted by gray
shading. Thin black lines with arrows indicate projections of t
trajectory of the tip of the wave vector as the relative speedb
between the reference frames increases from the initial valub
50 up tob50.8. The initial vector, i.e., the vector in the frameK8
~coinciding with the unprimed laboratory frame ifb50) has been
taken—as an example—transverse to thez axis. The Doppler shift
to the blue as observed in the laboratory frame is manifested~a! by
growth of the vertical component of the vector in the (kz ,k) plane
or, equivalently,~b! by increase of the length of the vector in th
(kz ,kr) plane.
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the wave vector—with fixed triplet of values ofkz ,k,kr

5Ak22kz
2. Such a support corresponds to a monochrom

Bessel beam. So, Fig. 4 shows the transformation of a sin
point support as well. It follows from Fig. 4 particularly tha
for any monochromatic Bessel beam, there is an iner
frame where the longitudinal componentkz vanishes; conse
quently, in such a ‘‘rest’’ frame the beam becomes
z-independent cylindrical monochromatic standing wa
with the wave functionJ0(rk)exp(ikct).

C. Lorentz transformation of support lines

As indicated above, for a wave packet to be propagat
invariant its support in thek space has to be degenerated in
a line, the projection of which onto the (kz ,k) plane has to
lie on a straightline. Henceforth, for brevity we shall u
term ‘‘support lines’’ for such one-dimensional supports a
their projections. In this subsection we consider some g
eral rules that govern the transformation of the support li
of the localized waves, which will be useful for a classific
tion of the waves in Sec. III. The lines as conical-sectio
type curves change their parameters but retain the type o
~generally curved! line, as will be deduced below from Eq
~7!. We shall consider both projections of the support, o
the plane (kz ,k) and plane (kz ,kr); see Fig. 3. The suppor
line in the latter plane reveals well the composition of
given LW from plane wave constituents, e.g., a straightline
the plane (kz ,kr) says that the LW consists of common pla
wave pulses, whereas a curved line means that the cons
ents are tilted pulses@37#.

In the plane (kz ,k) the line is straight given by Eq.~5!
and, as the transformations@Eqs.~7!# are linear, the line re-
mains straight, but its parameters are changed accordin
the following relations

vg⇒
~vg1b!

~11vgb!
,

~8!

b⇒ b

g~11vgb!
.

By taking appropriate limits in the right-hand side of expre
sion ~8!—the first row of which is nothing but the relativisti
law for addition of velocities—we get the following rules.

~1! vg⇒sgn(b) if ubu'1, i.e., no matter what the grou
velocity along the pulse’s propagation axis is in a giv
frame—equal toc ~luminal! or sub- or superluminal, the lo
calized wave turns out to be luminal if observed in anoth
reference frame that moves extremely relativistically w
respect to the first one.

~2! vg⇒sgn(vg) if uvgu'1, i.e., no matter what the spee
of another reference frame is, a luminal localized wave
also luminal in it.

~3! A subluminal ~superluminal! localized wave remains
subluminal~superluminal! in any possible frame, except th
first case is an extreme one.

~4! Also invariant is the conditionb50, which is possible
only for superluminal localized waves—of course, if we d
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GENERATION AND CLASSIFICATION OF LOCALIZED . . . PHYSICAL REVIEW E69, 036612 ~2004!
not consider common luminal plane waves—and results
an equality of the phase and group velocities of the wave
seen from Eq.~4!.

To summarize, belonging to one of the distinct classes
‘‘families’’ of localized waves—subluminal, luminal, generi
superluminal or superluminal with a propagation-invaria
wave function—is an invariant attribute of a localized wav
This invariance will be made use of in Sec. III for classi
cation of the waves.

Considering projections of the support onto the pla
(kz ,kr), from Eq.~7! we notice first that in this plane in th
course of the Lorentz transformation every point of the s
port moves along a straight parallel to thekz axis. However,
due to the nonlinear relationk25kr

21kz
2 a support line given

by Eqs.~5! and ~6! is generally not straight in the (kz ,kr)
plane or does not remain such under the Lorentz transfor
tion. The support line in this plane is generally a cone sec
instead, as is also obvious from Fig. 3. Only in a particu
case, whenb50 in Eqs.~5! and~6!, is the support a straight
line in both planes (kz ,k) and (kz ,kr) simultaneously, and
remains straight under the Lorentz transformation in wh
the slopea[tanu in the equation of the support linekr

5akz transforms in the following manner:

tanu⇒tanu
A12b2

11b/cosu
~9!

if we use the Axicon angleu under which all the plane wav
constituents propagate in the given case; see Eq.~3!. The
shape of the support in the (kz ,kr) plane gives an idea abou
the physical angular spectrum of the wave and possibili
to generate it.

III. RELATION TO OTHER TRANSFORMATIONS

A. Superluminal Lorentz transformations

In Ref. @14# the Lorentz transformation~LT! has been
generalized by introducing a superluminal LT for the case
a superluminal speedṽ of the frame, which in our designa
tions reads

x5x8,

z5g̃~ b̃z81ct8!, ~10!

ct5g̃~ b̃ct81z8!,

whereb̃[ ṽ/c and g̃[(b̃221)21/2; see Sec. I. The author
of Ref. @14# use this superluminal LT as if it generates ne
solutions to the scalar wave equation that are distinct fr
those they obtain by using the common subluminal LT. Ho
ever, as one can make sure by settingb̃5b21, all the right-
hand sides of Eq.~10! turn out to be equal to that of Eq.~1!.
So, the superluminal LT defined by Eq.~10! cannot give
anything different, and we prefer to work solely by the co
mon subluminal LT of 4 vectors, all the more since the c
ordinates in Eq.~10! remain unchanged weirdly only in a
extremely superluminal case, i.e., ifb̃→`. Of course, if one
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applies the subluminal LT to a wave, it is not inconceivab
that a superluminal velocityṽ5c2/v may appear in the ex
pression of the transformed wave, as mentioned alread
Sec. 3.2 of Ref.@14#.

There is another superluminal version of the LT know
mainly in tachyon research, which is defined like the co
mon LT via Eq.~1!, except that the quantitiesg and b are
replaced with their superluminal counterpartsg̃ and b̃. Let
us note parenthetically that this replacement willnot result in
Eq. ~10!. However, the physical meaning of this transform
tion into ‘‘tachyon world’’ remains controversial, since it in
verts the sign of the interval, i.e., changes timelike quanti
into spacelike ones and vice versa; moreover, it loses a po
to-point correspondence between objects as observed in
moving and laboratory reference frames. It is interesting
note that thanks to the latter peculiarity the authors of R
@44# found that a tachyon should have a characteris
shape—essentially the same one we know now anX-type
localized wave has; also see Refs.@17,45#.

B. Lu-Zou-Greenleaf transformation

Lu, Zou, and Greenleaf@46# proved a theorem indicating
how to get from a two-dimensional wave solution valid
the (x,y) plane to a three-dimensional solution rigidly mo
ing along thez axis with superluminal speed. For that pu
pose one needs simply to replace the arguments (x8,y8)
[rW 8 andt8 of the two-dimensional wave function accordin
to the following rules:

rW 85rW sinu,

ct85ct2z cosu,

where 0,u,p/2 is the angle introduced above as a char
teristic of the shape and a measure of superluminality of
X-type wave. As scaling of all arguments by a constant—
particular, division by sinu—does not change the source-fre
wave equation, the following transformation must do t
same job as the Lu’s does:

rW 85rW ,

ct85cotuS c

cosu
t2zD5g̃~ b̃ct2z!.

However, the latter is an equivalent of Eq.~10!, which in
turn was nothing but the common subluminal Lorentz tra
formation. Hence, as already noted in Ref.@14#, the Lu trans-
formation is a particular case of the Lorentz transformat
and this is the reason why the theorem works. The Lu tra
formation has been successfully exploited by various auth
for different purposes, e.g., for derivingX-shaped beams
propagating in cylindrical waveguides from known plan
wave solutions@30#.
2-5
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IV. GENEALOGY OF LOCALIZED WAVES

All localized waves belong to one of the three families
superluminal, subluminal, and luminal—according to t
slope of the straight representing the support in the pl
(kz ,k). Inside each family the LWs differ—besides values
the support parametersvg andb; see Eq.~6!—by their par-
ticular one-dimensional spectrumS(k) along the support
line: it may be more or less wide band, may or may not res
in a closed-form expression forC(r,z,t) according to Eq.
~4!, etc. However, all waves with similar shapes~scaling may
differ! of the spectrum can be considered as one and
same, no matter what the particular value of the sublum
or superluminal velocity is, since all these waves are rela
through the LT. In other words, all these waves are one
the same, but observed in different reference frames. If th
the case, a reference frame should exist where the wave
the simplest form. Such a wave can be considered a
‘‘seed’’ for corresponding localized waves. In this main se
tion of the paper we show that the ‘‘seed’’ waves have in
nitely large or vanishing values of the group velocity.

A. Generic superluminal family

The tranformation of the support lines, as analyzed in S
II C, is illustrated graphically in Fig. 5. We see that th

FIG. 5. The supports of superluminal localized waves and
relationship between them through the Lorentz transformation.
support lines are depicted as projections~a! onto the (kz ,k) plane
and ~b! onto the (kz ,kr) plane. The support corresponding
infinite-group-velocity LWs, all plane-wave constituents of whi
have the same valuekz0520.5 of the longitudinal component o
their wave vector, have been chosen as the initial support obse
in the frameK8 ~or also in the laboratory frameK if b50). The
final shape of the support~in the laboratory frame! has been de-
picted for b50.8. The thick black line depicts the support of
band-limited LW, while the thin line beneath it depicts the suppo
of all possible LWs with given group velocity. Concerning the un
and other explanations, see the previous figure caption.
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straight lines, whose slope in the (kz ,k) plane exceeds a
value 1 by its absolute value, are LT replicas of each oth
while the projection of the same superluminal support l
onto the (kz ,kr) plane is generally a hyperbola. Of particul
interest is the support line with a fixed value ofkz , in which
case the group velocity is infinitely large. We have chos
this to be the case in the moving frameK8. Hence, according
to Fig. 5~a! the larger the speed of the frame the smaller
group velocity of the wave in the laboratory frame. Howev
the velocity retains its superluminality. Only if the speed
the frames relative to each other attains its limiting valuec
(ubu→1); the group velocity decreases toc or uvgu51.

Let us consider a particular spectrum—an ultrawideba
one with exponential decay toward higher frequencies,
let Eq. ~6! take the form

C̃~kz ,k!5e2kDd~kz2kz0!Q~k22kz
2! ~11!

in the frameK8, whereD is a positive constant characteriz
ing the length of the wave pulse (D→0 for a white spec-
trum!, kz0 is the fixed value ofkz and the primes referring to
variables inK8 have been omitted for brevity. Inserting E
~11! into Eq. ~4! and integrating overkz contained in thed
function, one obtains

C~r,z,t !5exp~ ikz0z!E
ukz0u

`

dk J0~Ak22kz0
2 r!

3exp@2k~D1 ict !#. ~12!

The integral can be taken with the help of any Laplace tra
form table@e.g., Eq. 4.15~9! in Ref. @47## and the wave ob-
tains a simple form

C~r,z,t !5
exp~2ukz0uAr21~D1 ict !2!

Ar21~D1 ict !2
exp~ ikz0z!,

~13!

i.e., it turns out to be a simple cylindrical pulse modulat
harmonically in the axial direction and radially converging
the axis and thereafter expanding from it, the intensity d
tribution resembling an infinitely long tube coaxial with thez
axis and with time-dependent diameter; see Fig. 6. To
best knowledge, this wave was first considered as a local
wave of infinite group velocity in Refs.@38,42#. This cylin-
drical wave is a ‘‘seed’’ one for all superluminal localize
waves possessing the exponential spectrum, as we will
by redoing the derivation for the laboratory frame variabl
Inserting Eq.~11! into Eq. ~4! for the laboratory frame, we
bear in mind that under the integral Lorentz invariants
kzz2kct, k22kz

2 , anddkzdk, while, according to Eq.~7!,

e2kDd~kz2kz0!⇒exp@2g~k2bkz!D#

3g21d~kz2bk2kz0 /g!. ~14!

The new argument of thed function obeys the relations con
sidered in Sec. II C. Performing the integration overkz now
complicates the arguments of the Bessel and Heaviside f
tions:
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k22kz
2⇒k22~bk1kz0 /g!2;

however, the resulting integral overk can be given the sam
familiar form @Eq. 4.15~9! in Ref. @47## by change of the
variablek⇒g(k1bkz0) and we finally obtain

C~r,z,t !5
exp~2ukz0uAr21@D2 ig~bz2ct!#2!

Ar21@D2 ig~bz2ct!#2

3exp@ igkz0~z2bct!#. ~15!

This wave differs from that given by Eq.~13! qualitatively in
the same manner as Fig. 1~b! from Fig. 1~a! in Sec. I; see
Fig. 7. Of course, Eq.~15! can be derived from Eq.~13! by
the LT of the coordinates given by Eq.~1! as well. Earlier
this type of localized wave was derived and studied theor
cally in Ref. @14# from what the authors term ‘‘superlumina
boost representation’’ and in Ref.@48# by another genera
approach based on complex space-time ray theory. The
thors of Ref.@14# called it a ‘‘focusedX wave’’ ~FXW!, since

FIG. 6. The cylindrically converging-expanding wave given
Eq. ~13!. Shown are the dependences@~a! and ~c!# of the real part
and@~b! and~d!# of the modulus of the wave function on the coo
dinatez ~increasing from the left to the right! and on a transverse
coordinatex56r at two time instants:@~a! and~b!# ct50 and@~c!
and ~d!# ct51/10 mm. The distance between the grid lines on t
basal plane (x,z) is 1/10mm. The chosen values of the paramete
are D51/80 mm andkz0522p/l with l51/2 mm ~the plots re-
main the same with any other unit length instead of 1mm). The
grey-scale plots ofuC(x,z,t)u are normalized to ‘‘white’’ at the plot
maximum, so that the ‘‘white’’ level in the plot~d! is actually five
times weaker than in plot~b!. The grey shading in plots~a! and~c!
is a result of ‘‘lighting’’ used for better revealing the relief of th
surface.
03661
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the wave resembles to a certain extent both the FWM and
X-type waves. For a better comparison with theX wave ex-
pression in Sec. IV B and with Eq.~4.4! of Ref. @14# we
rewrite Eq.~15! using the superluminal quantitiesṽ and g̃
@see Eqs.~2! and ~10! and the text after them#:

C~r,z,t !5
exp~2ukz0uAr21@D2 i g̃~z2 ṽt !#2!

Ar21@D2 i g̃~z2 ṽt !#2

3expF i g̃kz0S ṽ

c
z2ctD G . ~16!

The FXW has a tight~exponential! transversal localization
but is yet an infinite-energy wave. Its intensity distributio
~modulus squared! propagates invariantly with velocity

ṽ.c; however, the wave function itself has a fine modu
tional structure~see Fig. 7!, copropagating or counterpropa
gating with luminal velocity depending on the sign ofkz0. Of
course, the FXW represents only one possible superlum
localized wave, cylindrical waves with spectra which diff
from that given by Eq.~13! give birth through LT to other
superluminal waves that need not have closed-form m
ematical expressions but all share the same general pro
ties, in particular, the hyperbolic support of the angular sp
trum in the (kx ,ky ,kz)-space.

B. Subfamily of superluminal pulses with a
propagation-invariant wave function

In casekz050 the support line in both planes (k,kz) and
(kr ,kz) lies on a straight which goes through the origin~Fig.
8!, i.e., the hyperbolic support degenerates into a straightl
Hence, in the momentum space of the laboratory frame
wave vectors lie on the surface of a cone, or, in other wor

FIG. 7. The superluminal FXW given by Eq.~15! or ~16!.
Shown are the dependences~a! of the real part and~b! of the modu-
lus of the wave function on the longitudinal and transverse coo
nates. The distance between the grid lines on the basal planex,z)
is 1/10mm. Chosen values of the parameters areD51/15 mm and

kz0522p/l with l51/30 mm andb50.8 or ṽ51.25c. Also see
the previous figure caption.
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P. SAARI AND K. REIVELT PHYSICAL REVIEW E69, 036612 ~2004!
all plane-wave constituents of the LW propagate under
same fixed angleu relative to thez axis and we recognize th
superluminalX wave considered in Sec. I. The moving fram
expression@Eq. ~13!# reduces forkz050 to

C~r,z,t !5
1

Ar21~D1 ict !2
, ~17!

which represents a simple two-dimensional pulsed wave
lindrically converging to and expanding from thez axis like
the modulus of the wave of the preceding subsection. In
laboratory frame, instead of Eqs.~15! and ~16! we now ob-
tain

C~r,z,t !5
1

Ar21@D2 ig~bz2ct!#2

5
1

Ar21@D2 i g̃~z2 ṽt !#2
, ~18!

which are nothing but the fundamentalX wave solutions
known since pioneering papers@10# and @12#. Despite vari-
ous plots depicting theX wave can be found in numerou
papers, just for convenience and comparison we present
in Fig. 9. Had we taken another spectrum, e.g.,C̃(kz ,k)
5kme2kDd(kz)Q(k) in Eq. ~11!, we would have obtained
higher-orderX waves @15# corresponding tomth-order de-
rivatives with respect to time in Eq.~18!. In any case, all
X-type waves share the following main features: invarian
and superluminally propagating wave function, support lin

FIG. 8. The supports of superluminal localized waves with
propagation-invariant wave function, and the relationship betw
them through the Lorentz transformation. The shape of the sup
in the laboratory frame has been depicted forb50.8 ~see Fig. 5!.
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are straights in both planes (kz ,k) and (kz ,kr) and their
prolongations cross the origin.

C. Subluminal family

As seen in Figs. 10 and 3, the support line of a sublumi
LW—i.e., if the slope in the (kz ,k) plane is less than 1 by its
absolute value—cannot cross the origin. Hence, for sublu
nal LWs, i.e., ifvg,1 the parameterb cannot vanish in Eqs
~5! and ~6!, and Eq.~8!. We also see that the projection o
any subluminal-type support line onto the (kz ,kr) plane is
generally an ellipse. Of particular interest is the support l
with a fixed value ofk5b, in which casevg50. Physically
this is understandable as the spatial distribution of ene
remains still for a strictly monochromatic field. Let such
rest frame beK8. According to Fig. 10~a! the larger the
speed of the frameK8, the larger the group velocity and th
bandwidth of the wave in the laboratory frame. However,
wave retains its subluminality only if the speed of the fram
relative to each other attains its limiting valuec; the group
velocity increases also toc.

In much the same way as in Sec. IV A, let us present
example showing how a ‘‘seed’’ wave possessing a sim
form in its rest frame transforms into corresponding sub
minal LW in the laboratory frame. We consider a particula
simple ‘‘seed’’ wave, a monochromatic spherical standi
wave

C~r,z,t !5
sin~br !

br
exp~2 ivt !, r[Ar21z2, ~19!

where the temporal frequencyv5cb corresponds to a
monochromatic fixed value ofk5b. Equation~19! has been
normalized to a unit peak at the origin and the expression

n
rt

FIG. 9. The superluminalX wave given by Eq.~18!. Shown are
the dependences of the real~a! and imaginary~b! parts of the wave

function on the propagation variablezt5z2 ṽt and the transverse
coordinate. The distance between the white grid lines on the b
plane is the same as in Fig. 7, but in the transverse direction
length scale has been compressed by factor of 2. Chosen valu

the parameters areD51/15 mm andb50.8 or ṽ51.25c.
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GENERATION AND CLASSIFICATION OF LOCALIZED . . . PHYSICAL REVIEW E69, 036612 ~2004!
be obtained as an isotropic superposition of plane wa
propagating in all possible directions. For this wave Eq.~6!
takes the form

C̃~kz ,k!5
2

b
d~k2b!Q~k22kz

2!, ~20!

since inserting Eq.~20! into Eq.~4!, and integrating with the
help of a table of the Fourier transforms of the Bessel fu
tions, returns the right-hand side of Eq.~19!.

If we perform the same procedure for the laborato
frame, the support line has to be Lorentz-transformed~Fig.
10!, i.e.,

d~k2b!⇒d~k2bkz2b/g!g21. ~21!

Everything else under the sign of integration remains inv
ant; however, carrying out the integration overk now com-
plicates the arguments of the Bessel and Heaviside functi

k22kz
2⇒~bkz1b/g!22kz

2 .

Again, the remaining integral overkz can be given the sam
familiar form of the Fourier integral ofJ0(Ab22kz

2r) by
change of the variablekz⇒g(kz1bb), and we finally obtain

FIG. 10. The supports of subluminal localized waves and re
tionship between them through the Lorentz transformation. T
support lines are depicted as projections~a! onto the (kz ,k) plane
and ~b! onto the (kz ,kr) plane. The support corresponding to
monochromatic beam, all plane-wave constituents of which h
the same frequencyv/c5b520.5 and propagate in the positiv
direction of thez axis, have been chosen as initial support obser
in the frameK8. This support and its Lorentz-tranformed equivale
in the laboratory frame withb50.8 are depicted by the thick blac
line. The thin line beneath it depicts the supports of fields, pla
wave constituents of which propagate in both directions of thz
axis, i.e., in all possible directions as it is in the particular case
fields given by Eqs.~19!–~22! ~see Figs. 5 and 8!.
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C~r,z,t !5
sin@bAr21g2~z2vt !2#

bAr21g2~z2vt !2
exp@ ibbg~z2 ṽt !#,

~22!

which gives a LW whose envelope moves rigidly along thz
axis with the subluminal velocityv5bc, whereas the phas
modulation moves superluminally withṽ[b21c5c2/v. In
addition, its sinc-function-like amplitude distribution is no
longer spherically symmetric as it was in the wave’s r
frame. Instead, it has been compressed in the axial direc
due to the Fitzgerald-Lorentz contraction; see Fig.
Equivalently, Eq.~22! can be obtained through the LT o
coordinates in Eq.~19! @14#, that proves our momentum
domain derivation. It is interesting to note that the pu
given by Eq.~22! was derived long ago by Mackinnon i
another context of theoretical physics@49#. Salo et al. @50#
calculated subsonic acoustical LWs inserting nonisotro
spectral functions into an equivalent of our Eq.~4!. However,
the spectra used have not resulted in closed-form express
for the field. By consulting Fig. 10 it becomes obvious th
any monochromatic field—including more or less narro
beams—must turn out to be a subluminal LW if observed
another reference frame. We have obtained an interes
beamed version of the Mackinnon’s pulse from an ani
tropic version of the wave given by Eq.~19! in which the
origin had been shifted to an imaginary locationz05 id, i.e.,
the ‘‘seed’’ wave was the nonparaxial Gaussian beam~see
Ref. @34# and references therein!. The resulting field of such
a new subluminal LW is given by the same closed-form e
pression of Eq.~22!; however, in the roots the axial variabl
z is to be replaced byz2 id.

-
e

e

d
t

-

f

FIG. 11. The subluminal Mackinnon’s pulse given by Eq.~22!.
Shown are the dependences~a! of the real part and~b! of the modu-
lus of the wave function on the longitudinal and transverse coo
nates. The distance between the white grid lines on the basal p
is the same as in Fig. 7, but in the transverse direction the len
scale has been compressed by factor of 2; therefore the modul
first glance seems to be circularly symmetric~i.e., spherically sym-
metric in space! in spite of the Fitzgerald-Lorentz contraction in th
axial direction. Chosen values of the parameters areb52p/l with

l51/4 m m andb50.8 or ṽ51.25c ~again, the plots remain the
same with any other unit length instead of 1mm).
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D. Luminal family—focus wave modes

Figure 12 depicts, in terms of the supports, how a mo
chromatic collimated beam, propagating in an ultrarelativ
tic frame in the negative direction of thez axis, in the labo-
ratory frame turns out to be a wideband LW propagat
almost luminally in the positive direction of thez axis. The
closer the relative speed between the frames to the limb
→1, the closer the support to that of a luminal one is. O
viously, a luminal support line implies ad function in the
spectrum of Eq.~6! in the form d(k2kz2b) with b.0,
which results from either a superluminal or subluminal ca
through an ultrarelativistic LT withb→1. If the initial wave
~i.e., as observed in the moving frame! is taken to be mono-
chromatic with a frequencyv85cb8, then according to Eq
~21! @also see Eq.~8!# the frequency must run to infinity asg
in order to retain the lateral structure and localization of
wave. Indeed, thed factor in the formd(k2kz) would imply
a degeneration of the parabolic support line in the (kz,kr)
plane into straight starting from the origin, i.e., the supp
line would become that of a plane wave pulse propaga
along thez axis. Let us take the spectrum in the laborato
frame with an exponential amplitude, i.e., in the form

C̃~kz ,k!5d~k2kz2b!exp@2D~k1kz!#Q~k22kz
2!.

~23!

Inserting Eq.~23! into Eq. ~4!, carrying out the integration
over k, and changing the variablekz⇒kz2b/2 results in the
integral expression for the wave function:

FIG. 12. Ultrarelativistic Lorentz transformation withb50.99
of the support of a monochromatic beam into the support o
FWM-type luminal wave. The initial support~as observed in the
frame K8) corresponds to a beam, all plane-wave constituents
which have the same frequencyv/c5b520.5 and propagation
directions close to the negative direction of thez axis ~see Fig. 10!.
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C~r,z,t !5exp@2 ib~z1ct!/2#E
0

`

dkz J0~A2bkzr!

3exp~22Dkz!exp@ ikz~z2ct!#.

The integral is nothing but a known Laplace transform@see,
e.g., Eq. 4.14~25! in Ref. @47## and we finally obtain

C~r,z,t !5
exp$2r2b/2@2D2 i ~z2ct!#%

@2D2 i ~z2ct!#

3exp@2 ib~z1ct!/2#, ~24!

which we recognize as the fundamental focus wave m
propagating in the positive direction of thez axis. Equation
~24! coincides with the well-known expression of the FW
@12,14# if we complex conjugate Eq.~24! and change desig
nations of the parametersb/2⇒b8 and 2D⇒a1. Since the
FWM has been studied in a large number of publicatio
here we omit plotting its spatial structure, all the more sin
it is quite similar to that of the FXW depicted in Fig. 7.

Equation ~23! and Fig. 12 indicate the well-known cir
cumstance in which the FWM is comprised not only of pla
waves propagating into the positive hemisphere~i.e., those
with kz.0), but also of transversally propagating ones~with
kz50 and kr5k5b) as well as of backward propagatin
ones~with kz,0). Due to the extremely strong Doppler e
fect and aberration wheng→` this is the case irrespectiv
of how narrow~around the direction2z) the angular spec-
trum of the ‘‘seed’’ monochromatic beam in theK8 frame is.
Moreover, as shown in Ref.@6# the common monochromati
Gaussian beam propagating in the negative direction of tz
axis, which only in the paraxial approximation satisfies t
wave equation, transforms into the FWM in the laborato
frame in the limitsb→1 andg→`. In this limit, as follows,
e.g., from Eq.~7! and Fig. 12, in the laboratory frame on
can get a luminal LW containing only forward-propagatin
optical-frequency constituents, if the monochromatic be
in theK8 frame doesnot contain the most paraxial portion o
the backward-propagating constituents~those with values
kz8.2k8). In other words, for an optical-domain lumina
LW in the laboratory frame its ‘‘seed’’ monochromatic bea
in the ultrarelativistically moving frameK8 has to be a
backward-propagating Bessel beam with a small spread
kr8 .

In conclusion, no matter what the particular spectrum is
whether it covers with an exponential amplitude the wh
possible length of the support line as in the case of the f
damental FWM or the amplitude is distributed around so
point~s! of the line—the distinguishing common feature
all luminal LWs is that their support lies on a straight
slope 1 in the plane (kz ,k) and on a parabola in the spac
(kz ,kr ,k) ~Fig. 3!.

V. DISCUSSION AND CONCLUSIONS

The Lorentz transformation of LWs can be carried o
either in the coordinate-time space or, equivalently, in
momentum-frequency space~we have used ‘‘momentum’’ as

a

f
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GENERATION AND CLASSIFICATION OF LOCALIZED . . . PHYSICAL REVIEW E69, 036612 ~2004!
a synonym for ‘‘wave vectork’’ for brevity, implying that the
quantum terminology can be adopted for the LWs as we!.
The latter approach requires a bit more mathematical effo
the transformed spectrum is to be returned from the Fou
domain into the wave function in the (r ,t) representation.
However, working in the momentum space with t
Fourier~-Bessel! representation has certain advantages si
it allows for better control and a physical insight into what
going on with the wave when the observer jumps into
other inertial reference frame. We can easily track e
plane-wave constituent~or Bessel-beam constituent! under-
going the Doppler shift and aberration. For example, fr
Fig. 5 and Sec. IV A. it is obvious that if the sign ofkz0 of
the ‘‘seed’’ cylindrical wave is positive, the FXW in the labo
ratory frame contains forward-propagating constitue
only—i.e., is ‘‘causal’’ in the jargon adopted in the literatu
on LWs—while the presence of the backward-propagat
constituents has been considered as a characteristic featu
the FXW. As to the task of finding new types of LWs, ca
rying out the subluminal LT on the spectral representat
ensures that the result is really a source-free field ev
where, i.e., it consists of homogeneous-wave compon
and does not contain evanescent ones.

In contradistinction to the group velocity, the phase velo
ity cannot serve as a basis of classification of the LWs. Si
all LWs have plane-wave constituents that propagate
anglesu (0ÞuÞp) with respect to thez axis, the net phase
velocity along the axis is necessarily larger thanc, at least to
a vanishingly small extent. Indeed, McKinnon’s pulse h
according to Eq.~22!, a phase velocity that in units ofc is the
reciprocal of its subluminal group velocity. The absolu
value of the phase velocity along the axis for both the FX
and FWM’s is almost exactly equal toc except in the vicinity
of the moving center of the pulse, where it is slightly high
due to the Gouy-effect-type phase shift from2p/2 to 1p/2,
which follows from the denominator in both Eqs.~15! and
~24!. The superluminal LWs with a propagation-invaria
wave function orX-type waves considered in Sec. IV B hav
a phase velocity equal to their superluminal group veloc
i.e., there is no dispersion since all the plane-wave cons
ents propagate at a fixed angleu with respect to thez axis.

As far as axisymmetric LWs are considered, their suppo
in the three-dimensional momentum space (kx ,ky ,kz) are
surfaces of rotation: for superluminal LWs the support is
hyperboloid~which degenerates into a cone forX-type LWs!,
for subluminal LWs it is an ellipsoid, and for luminal LWs
is a paraboloid. As to more general cases of nonaxisymm
ric waves—those possessing orbital angular momentum
bowtie beams@51# up to LWs in anisotropic media@52#—the
support may lose its rotational symmetry, and possibilities
group such LWs into distinct classes each having a sim
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‘‘seed’’ wave related through the LT needs further investig
tion.

As to practically feasible finite-aperture realizations of t
LWs, the conclusions obtained remain valid since in the
proach based on the spectral supports the condition of fi
energy can be easily taken into account by allowing the s
port lines to acquire a finite thickness~as, in fact, it is de-
picted in the figures!.

Despite the fact that we have considered scalar LWs h
the treatment and results holdmutatis mutandisfor a vecto-
rial electromagnetic field as well through the association
any scalar LW with components of the electromagnetic
tential or the Hertz vector. For acoustic fields a somew
intriguing operationalistic question arises concerning obs
vations of LW in different reference frames: of course,
acoustic field—like any field obeying the wave equation
can be invariantly Lorentz transformed if the speed of sou
is inserted into the formulas, but what is supposed to be
inertial frame in which we could observe the drastica
changed wave? For an electromagnetic field, such ques
does not arise since there is no other speed involved than
universal constantc determining the fundamental propertie
of space and time. Let us stress that throughout this stud
we say that a wave turns out to be quite different ifobserved
in another reference frame, we do not mean that it sim
seems different, we mean that itis different as verified by
any appropriate physical means of measurement. All
more we do not mean what we cansee, since, as is well
known in the special theory of relativity, due to the fini
speed of lightvisible shapes of relativistically moving ob
jects are substantially distortedin addition to the Fitzgerald-
Lorentz contraction. In fact, if we do not use indirect mea
like light scattering from small particles suspended in spa
we see nothing if looking at the pulse from a side.

Apart from enabling a deeper comprehension of
physical nature of LWs and of the Lorentz transformation
wave optics in general, the present study might also be
practical significance, e.g., in finding new LWs with pr
scribed properties. Of course, transforming into a relativi
cally moving frame can hardly be viewed as a physical t
for the generation of a LW; however, it may be practica
useful for a treatment of the interaction between relativis
particles and localized electromagnetic waves in resea
fields like laser-driven acceleration, etc.
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